火星で液体H₂Oが安定となる場所と時間の広がり:自転軸傾斜角・初期平均 地表気圧を変えてのシミュレーション

05B21526 林丈起

1. 火星での H₂0

現在の火星表層は、多くの地域・時間において液体のH₂Oが安定に存在することのできない、低温・低圧の環境である。しかし、表層を液体のH₂Oが流れて形成されたと考えられる地形が存在していることから、液体のH₂Oが安定に存在する環境が局所的・一時的に出現した可能性が示唆されている。

火星の表層環境は、大きく(10度以上)変化する自転軸傾斜角の影響を強く受けていると考えられている。自転軸傾斜角の変動は、地表温度の地理的分布・季節変化だけでなく、地表に氷として固定されるCO₂量を変えることで大気圧も変化させる(Bierson et al., 2016)。

本研究は、大気大循環モデルを用いて気候シミュレーションをおこない、最近100万年間の火星において、液体のH₂0が安定に存在することのできる地域と時間の分布を調べた。

2. モデルと実験設定

実験には地球電脳俱楽部の大気大循環モデルDCPAM5 (https://www.gfd-dennou.org/library/dcpam/)を用いた。基本的な設定は現在の火星に対応するものとしたが、自転軸傾斜角が変動することを考慮して、以下の表に示したパラメタを変えて計28通りの計算をおこなった。各計算は6火星年の積分をおこない、解析は最後の1火星年を使用した。

- 2 - 7 - 7 - 7 - 7		
	現在*	その他
自転軸傾斜角(度)	25	20, 30, 35
平均地表気圧(Pa)	600	800, 1200
近日点黄経(度)	251	90, 270
ダストの光学的厚さ	0.2	0.0, 1.0

*おおよそ現在の火星

3. 実験結果

初期平均気圧600Paで、自転軸傾斜角を変えた場合の計算結果が図1である。自転軸傾斜角だけを変えた場合、温度・圧力ともにH₂0の三重点を超えた(液体のH₂0が安定に存在できる)場所は広がらなかった。これは、温度を超える場所は極方向に広がったが、圧力を超える場所はほとんど変化しなかったためである。特に、標高が高い地域では、温度・圧力が三重点を超えることがない。

自転軸傾斜角25度で初期平均気圧を変えた場合の計算結果が図2である。自転軸傾斜角が変わらなくても、平均気圧が大きくなると温度・圧力が三重点を超える場所と時間は拡大した。液体のH₂0が安定に存在できる領域の拡大には、温度の上昇より圧力の増加が必要である。

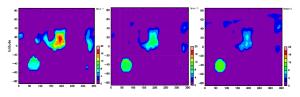


図1:1火星年のうち、地表の温度・圧力が H20 の三重点を上回った時間の割合(%)。赤に近い場所ほど上回った時間が長く、紫に近いほど短い。

左:自転軸傾斜角 20 度・初期地表平均気圧 600Pa 中央: 30 度・600Pa、右: 35 度・600Pa

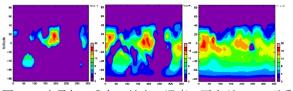


図2:1火星年のうち、地表の温度・圧力が H₂0 の三重 点を上回った時間の割合(%)。

左:自転軸傾斜角 25 度・初期地表平均気圧 600Pa 中央: 25 度・800Pa、右: 25 度・1200Pa